How Drexel students are bringing a dinosaur back from the dead - Philly


Mar. 14, 2016 11:52 am

How Drexel students are bringing a dinosaur back from the dead

Using motor-powered 3D-printed models, Drexel researchers are studying how the Dreadnoughtus dinosaur moved.
Drexel researcher Kristyn Voegele.

Drexel researcher Kristyn Voegele.

(Photo by Rob Torres)

Heavier than a 737 jet. Longer than six sedans. Taller than a two-story building.

The towering Dreadnoughtus schrani, discovered in Argentina by Drexel University’s Dr. Ken Lacovara (who now works for Rowan University) and detailed in a 2014 publication in Scientific Reports, is one of the largest dinosaurs ever found.

In spite of its massive proportions, this Titanosaur is making a comeback in Drexel’s Laboratory for Biological Systems Analysis with the help of 3D printers, servomotors and the cooperation of two bright students: Kristyn Voegele, from the doctorate program, and David McDevitt, an engineering undergrad.

David McDevitt - Rob Torres

Drexel undergrad David McDevitt. (Photo by Rob Torres)

Set on a quest to study the animal’s motion the way it once was, Voegele provided McDevitt with her ample knowledge of the fossil, as she was part of Dr. Lacovara’s research team. “Looking closely at the fossil, there are textured areas where muscle was attached to the bone. We call that a muscle scar,” she explained.


Because the dinosaur’s bone structure was 70 percent complete and very well-kept for its age, there are plenty of available muscle scars, which can pinpoint where a muscle was attached to bone. By checking these connections against the skeletal system of alligators and birds — dinosaur’s closest relatives — researchers can say with higher certainty how the dinosaur’s joints moved.

This study is part of Voegele’s doctoral dissertation, which focuses on studying the movement of the extremities. That’s where McDevitt’s engineering chops came in. “I wanted to develop a testing apparatus so that Karyn could develop all her different hypothesis as to the motion of the limbs,” he said.

The resulting device is a metal structure with a motor bed capable of moving up to eight antagonistic muscle groups — represented with thin metal coil — through a set of servomotors. When one muscle or ligament “flexes,” the other “relaxes.” It was developed with the express purpose of being as easily modified as possible. In fact, the rig can sustain up to six motor beds for a total of 48 antagonistic muscles.

“Any kind of limb structure can be represented thanks to the rig,” McDevitt said as he sprung the machine into action on a recent visit. In doing so, McDevitt recreated a motion that had not seen the light of day since the Upper Cretaceous period (roughly 75 million years ago).

At the touch of a button, the machine makes the 3D-printed humerus and radius replica move back and forth in perfect harmony. “We haven’t studied dinosaurs in this way before,” said McDevitt. “We used to rope the physical bones up to the ceiling and then figure out the movement patterns from there. This sort of application of engineering techniques allows for a higher precision than ever before.”

In fact, the 3D printer has been a great stride forward for this kind of research, allowing scientists to replicate complex structures at any desired scale quickly and inexpensively. Each replica of fossils, depending on the scale, can take between nine and 14 hours to be completed.

The research duo is currently focused on studying Dreadnoughtus’ elbow. In Voegele’s opinion, the goal going forward is to produce a fairly robust model that shows the way this magnificent creature roamed the Earth. However, another interesting result has come of the research process: the value of collaboration between science fields.

“We truly could not have done this without the knowledge of each other,” she said.

Model and David McDevitt - Courtesy of Drexel U

3D-printed model dinosaur bones. (Photo courtesy of Drexel)

You must appreciate accurate, relevant and productive community journalism.  Support this sort of work from professional reporters with seasoned editors.  Become a member for $12 per month
Companies: Drexel University
Already a contributor? Sign in here
Connect with companies from the community
New call-to-action


Exton cell and gene therapy company Fibrocell will be acquired for $63.3M

Carisma Therapeutics raised nearly $60M in Series A funding. Now what?

A Center City biotech company is using an algorithm to help patients with memory loss



7 biz resources we learned about at Super Meetup Philly 2019



UX Designer

Apply Now

Chesterbrook, PA


Inside Sales Representative

Apply Now

Horsham, PA

Penn Mutual

Product Owner/Business Transformation Specialist

Apply Now

Philly will host an inaugural pharma conference next month

The University City Science Center supported 149 projects and companies in the last year

BIO 2019 was in Philly this week. Here’s what you missed



Paid family leave adds to the perks at Chariot Solutions

Center City


Member Experience Specialist

Apply Now

Philadelphia, PA


Frontend Engineer

Apply Now

601 Lee Road Chesterbrook PA 19087


Corporate Recruiter

Apply Now

Sign-up for daily news updates from Philadelphia

Do NOT follow this link or you will be banned from the site!